
 

Local isometries and rigid motions do Carmo 4 2

Recall tf 1133 1133 rigid motion

dyp v dyp w L V w

T p E IR 3 V v w E IR TPB

4 x A b where A C OG b E B
L

rotation translation
reflection

Def'd Two surfaces S Sz in IR's are congruent

if I rigid motion 9 Ps3 B s t 415 Sz

Sz

Note Congruent surfaces have the same geometry
both intrinsic and extrinsic

I 1
depends only depends both

on 1st f f on 1st 2nd f f



Question Is there a transformation that ONLY

preserves the intrinsic geometry

Def't A smooth map 9 S Sz between surfaces

is said to be a local isometry if T p E S

Afp Tps TyµSz is a linear isometry

i e L d9p V dyp w L v w V p E S

F v w CTps
If furthermore 4 is a diffeomorphism then we say
that 4 is an isometry

Example Any rigid motion 9 133 1133 restricts to

an isometry 91g S 9 S

Def'd 1 Two surfaces S and S are isometric if

7 isometry 4 is S

2 Two surfaces S and S are locally isometric

if V p E S I nbd V E S and a local isometry

4 S

and V p E S 7 nbd E S and a local isometry

4 V s



Remark Two surfaces can be locally isometric without

being isometric for example

0

locally isometric
7

isometric

plane
Cylinder

Basically intrinsic geometry is the study of properties

quantities that are invariant under isometries

Prop Local isometries preserve the length of curves on

surfaces
s O

a f Yon
To 7 20

local isometry

Proof fabyattsildt fabHdf att Hdt

Length L Length Yo x
D

F X Area is preserved under isometries



Note Since a plane has HE 0 but HE 0 for cylinders

the mean curvature It is NOT intrinsic

However we will see later that the Gauss curvature

K is actually intrinsic

Q How to decide if two surfaces S and I are

locally isometric

A YES if they have the same 1st fundamental form

Prop Let I U s and XI U 5 be

parametrizations of the surfaces S and from the

SAME domain U E B s t

1st f f 1st f f

of S Lij ij of
T w r t IT

w.r.tn It
as 2 2

matrices

of functions
on U

Then

XI o XI I U ECU is an

A in isometry
S 3



Example The helicoid and catenoid are locally isometric

There are parametrizations XI IT 0,2T x IR 1123

Catenoid TI u v cosh cos u coshu sin u v

helicoid XI Lu v Sinh u cos u sinhu sin u U

The 1st fundamental form for the catenoid w r T XI is

Gj
Wsh v o

coshi

The 1st fundamental form for the helicoid w r T It is

Ej
Wsh v o

coshi

Since Gig ij on U 0,2T x IR Prop above

shows that o E is an isometry



Calculus of vector fields in IR

Def't vector fields as directional derivatives

Given a vector field X IR B it defines an

operator on smooth functions on B

X CCR CTR
O U

f i s X f

where X f p D pf p
A directional derivative

of f at p along Xp
d f Cpt t Xpdt

Xp to

t
f acts for ANY curve 2 s t

t _o X o p x o Xp

Properties i Linearity X aft bag a X f b X g

2 Leibniz rule X fg f X g t g X f

where A b E IR are constants f g e IR

Note Given a vector field X and f e C IR one can

define a new vector field f X s t f X p Fcp X p



Properties i Linearity a X BY f a X Cf b Xcg

z Tensorial f X g f X g

In terms of the Euclidean coordinates X on IR

we can express any vector field X IR R as

Xcx x a'Cx xn a Cx xn

i
Smooth functions

n

I ai e fei Std basis of B
i

Since Ei corresponds to as operators therefore

X a ta t a n

Since vector fields can be viewed as operators on IR

we can consider their compositions

Y
Ccpi scary s Earn

Y X

i.e f 1 2 X f 1 7 Y X f

or f 1 3 Y f X TH


