

Question: Is there a transformation that ONLY preserves the intrinsic geometry ?

 $Def^{\underline{n}}$: A smooth map $\varphi : S_1 \longrightarrow S_2$ between surfaces is said to be a local isometry if $\forall p \in S_1$,

 $d\mathcal{G}_p:\mathsf{T}_pS_1\longrightarrow \mathsf{T}_{\varphi_{(p)}}S_2$ is a linear isometry

i.e. $\langle d\varphi_p(v), d\varphi_p(w) \rangle = \langle v, w \rangle \quad \forall p \in S_1$ $V v, w \in T_{p}S_{1}$

If, furthermore, φ is a diffeomorphism, then we say that φ is an isometry.

- Example: Any rigid motion $9 : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ restricts to an isometry $\mathcal{G}|_{S} : S \longrightarrow \mathcal{G}(S)$.
- Def^a : (1) Two surfaces S and S' are isometric if \exists isometry $\varphi : S \rightarrow S'$. (2) Two surfaces S and S' are locally isometric if $\forall p \in S$, \exists nbd $V \subseteq S$ and a local isometry $4.4 \rightarrow S'$

and $\forall p' \in S'$, \exists nbd $V' \subseteq S'$ and a local isometry $\varphi: V \rightarrow S$

Remark Two surfaces can be locally isometric without being isometric, for example, 0 locally isometric 7 isometric plane Cylinder Basically, "intrinsic geometry" is the study of properties/ quantities that are invariant under isometries! Prop: Local isometries preserve the length of curves on surfaces ζ \leftrightarrow $\qquad \qquad$ $\qquad \qquad$ local isometry Proof: $\int_{a}^{b} || \alpha'(t) || dt = \int_{a}^{b} || d \int_{\alpha(t)}^{a}(x'(t)) || dt$ Length (d) Length (P. d) D

Ex: Area is preserved under isometries.

Note: Since a plane has $H \equiv o$ but $H \neq o$ for cylinders, the mean curvature H is NOT intrinsic. However, we will see later that the Gauss curvature ^K is actually intrinsic $Q:$ How to decide if two surfaces S and \hat{S} are locally isometric? A: YES if they have the "same" Ist fundamental form. Prop: Let $X: u \longrightarrow S$ and $\hat{X}: u \longrightarrow \hat{S}$ be parametrizations of the surfaces S and \hat{S} from the SAME domain $u \in \mathbb{R}^2$ s.t. 1^{st} f.f. 1^{st} f.f. 2^{st} of $S = (9ij) = (3ij) = 0$ \uparrow w.r.t. $\bar{\mathbf{X}}$ $w.r.t.$ \underline{X} as 2×2 matrices of functions

on U

Then,

$$
\frac{\widehat{x}}{\widehat{x}} \cdot \overline{x}^{-1}: \overline{x}(u) \longrightarrow \frac{\widehat{x}(u)}{\widehat{x}} u \text{ is an } \widehat{S}.
$$

Example: The helicoid and catenoid are locally isometric. There are parametrizations X , \hat{X} : (0,2TT) x $\kappa \rightarrow \kappa^3$ $\text{Categorical : } X(u, v) = (\text{cosh } v \text{ cos } u , \text{cosh } v \text{ sin } u , v)$ helicoid : $\hat{\overline{\mathbf{X}}}$ (u,v) = (sinhv cosu, sinhv sinu, u) The 1^{st} fundamental form for the catenoid w.r.t. \overline{X} is Öij Wsh v o coshi

The 1^{st} fundamental form for the helicoid w.r.t. $\hat{\mathbf{\Sigma}}$ is

$$
(\hat{\theta}_{ij}) = \begin{pmatrix} \cosh^2 v & 0 \\ 0 & \cosh^2 v \end{pmatrix}
$$

Since $(g_{ij}) = (\hat{g}_{ij})$ on $\mathcal{U} = (0,2\pi) * \mathbb{R}$, Prop. above shows that $\hat{X} \circ \hat{X}^{\dagger}$ is an isometry.

S Calculus of vector fields in R^n

Def["]: (vector fields as directional derivatives) Given a vector field $X : \mathbb{R}^n \to \mathbb{R}^n$, it defines an operator on smooth functions on R":

$$
\times \begin{array}{ccc} \n\cdot & C^{\infty}(\mathbb{R}^n) \longrightarrow & C^{\infty}(\mathbb{R}^n) \\
\downarrow & & \downarrow \\
\uparrow & & \downarrow \\
\uparrow & & \downarrow \\
\end{array}
$$

where $X(f)(p) := \bigcup_{X \rho} f(p)$ and directional derivative derivative of f at p along Xp

$$
x_{P}
$$
\n
$$
= \frac{d}{dt} \int_{t=0}^{t} f(p + t X_{P})
$$
\n
$$
= \frac{d}{dt} \int_{t=0}^{t} f(\alpha(t)) \quad \text{for any curve } \alpha \text{ s.t.}
$$
\n
$$
\alpha(0) = p, \alpha'(0) = X_{P}
$$

Properties: (1) Linearity: $X(af + bg) = a X(f) + b X(g)$

(2) Leibniz rule: $X(fg) = f X(g) + g X(f)$

where $a, b \in \mathbb{R}$ are constants, $f, g \in C^{\infty}(\mathbb{R}^{n})$.

Note: Given a vector field X and $f \in C^{\infty}(\mathbb{R}^{n})$, one can define a new vector field $f \times st.$ $(f \times \lambda(p) = f(p) \times (p)$. Properties: (1) Linearity: $(a X + b Y)(f) = a X(f) + b X(g)$ (2) Tensorial: $(fX)(g) = f(x(g))$

In terms of the Euclidean coordinates $x^1, ..., x^n$ on \overline{R}^n . We can express any vector field $X: \mathbb{R}^n \to \mathbb{R}^n$ as

$$
\times (x',...,x'') = (a'(x',...,x'),......,a''(x',...,x'')smooth functions
$$

$$
= \sum_{i=1}^{n} a^{i} e_{i} , \qquad \{e_{i}\} \text{ std. basis of } \mathbb{R}^{n}
$$

Since e_i corresponds to $\frac{\partial}{\partial x^i}$ as operators, therefore

$$
\chi = \alpha' \frac{\partial}{\partial x'} + \alpha^2 \frac{\partial}{\partial x^2} + \cdots + \alpha^n \frac{\partial}{\partial x^n}
$$

Since vector fields can be viewed as operators on $C^{00}(\mathbb{R}^n)$ we can consider their compositions

$$
C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\chi} C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\chi} C^{\infty}(\mathbb{R}^{n})
$$

i.e. $f \mapsto \chi(f) \mapsto \gamma(\chi(f))$
or $f \mapsto \gamma(f) \mapsto \chi(\gamma(f))$